3.15 \(\int \frac{x}{a x+b x^3} \, dx\)

Optimal. Leaf size=24 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b}} \]

[Out]

ArcTan[(Sqrt[b]*x)/Sqrt[a]]/(Sqrt[a]*Sqrt[b])

________________________________________________________________________________________

Rubi [A]  time = 0.0089429, antiderivative size = 24, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {1584, 205} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a*x + b*x^3),x]

[Out]

ArcTan[(Sqrt[b]*x)/Sqrt[a]]/(Sqrt[a]*Sqrt[b])

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x}{a x+b x^3} \, dx &=\int \frac{1}{a+b x^2} \, dx\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.0038165, size = 24, normalized size = 1. \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{\sqrt{a} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a*x + b*x^3),x]

[Out]

ArcTan[(Sqrt[b]*x)/Sqrt[a]]/(Sqrt[a]*Sqrt[b])

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 16, normalized size = 0.7 \begin{align*}{\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^3+a*x),x)

[Out]

1/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a*x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.41005, size = 151, normalized size = 6.29 \begin{align*} \left [-\frac{\sqrt{-a b} \log \left (\frac{b x^{2} - 2 \, \sqrt{-a b} x - a}{b x^{2} + a}\right )}{2 \, a b}, \frac{\sqrt{a b} \arctan \left (\frac{\sqrt{a b} x}{a}\right )}{a b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a*x),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-a*b)*log((b*x^2 - 2*sqrt(-a*b)*x - a)/(b*x^2 + a))/(a*b), sqrt(a*b)*arctan(sqrt(a*b)*x/a)/(a*b)]

________________________________________________________________________________________

Sympy [B]  time = 0.122746, size = 53, normalized size = 2.21 \begin{align*} - \frac{\sqrt{- \frac{1}{a b}} \log{\left (- a \sqrt{- \frac{1}{a b}} + x \right )}}{2} + \frac{\sqrt{- \frac{1}{a b}} \log{\left (a \sqrt{- \frac{1}{a b}} + x \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**3+a*x),x)

[Out]

-sqrt(-1/(a*b))*log(-a*sqrt(-1/(a*b)) + x)/2 + sqrt(-1/(a*b))*log(a*sqrt(-1/(a*b)) + x)/2

________________________________________________________________________________________

Giac [A]  time = 1.16161, size = 20, normalized size = 0.83 \begin{align*} \frac{\arctan \left (\frac{b x}{\sqrt{a b}}\right )}{\sqrt{a b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a*x),x, algorithm="giac")

[Out]

arctan(b*x/sqrt(a*b))/sqrt(a*b)